Hoy en Revista Dosis

Los fibroblastos dérmicos son células especializadas en la piel que generan tejido y ayudan a la piel a recuperarse de una lesión. Algunos fibroblastos tienen la capacidad de convertirse en células de grasa, lo que le da a la piel un aspecto regordete y juvenil y produce un papel fundamental en la lucha contra las infecciones.

En un estudio publicado este miércoles en ‘Immunity’, investigadores de la Facultad de Medicina de la Universidad de California San Diego, Estados Unidos, muestran cómo se desarrollan los fibroblastos en las células de grasa e identifican la vía que hace que este proceso cese a medida que las personas envejecen.

“Hemos descubierto cómo la piel pierde la capacidad de formar grasa durante el envejecimiento”, afirma el autor principal del estudio, Richard Gallo, profesor distinguido y presidente del Departamento de Dermatología de la Escuela de Medicina de la UC San Diego. “La pérdida de la capacidad de los fibroblastos para convertirse en grasa afecta a la forma en que la piel combate las infecciones e influye en el aspecto de la piel durante el envejecimiento”, explica.

Ganar peso no es la solución

Ganar peso no es el camino para convertir los fibroblastos dérmicos en células de grasa, ya que la obesidad también interfiere con la capacidad de combatir infecciones. En cambio, una proteína que controla muchas funciones celulares, llamada factor de crecimiento transformante beta (TGF-beta), impide que los fibroblastos dérmicos se conviertan en células grasas y que las células produzcan el péptido antimicrobiano catelicidina, que ayuda a proteger contra infecciones bacterianas, informaron los investigadores.

 “Los bebés tienen una gran cantidad de este tipo de grasa debajo de la piel, lo que hace que su piel sea inherentemente buena para combatir algunos tipos de infecciones. Los fibroblastos dérmicos envejecidos pierden esta capacidad y la capacidad de formar grasa debajo de la piel –afirma Gallo–. La piel con una capa de grasa debajo de ella se ve más joven. Cuando envejecemos, la apariencia de la piel tiene mucho que ver con la pérdida de grasa”.En modelos de ratón, los investigadores usaron bloqueadores químicos para inhibir la vía del TGF-beta, haciendo que la piel vuelva a una función más joven y permitiendo que los fibroblastos dérmicos se conviertan en células grasas. La desactivación de la vía en ratones mediante técnicas genéticas tuvo el mismo resultado.Comprender el proceso biológico que conduce a una pérdida dependiente de la edad de estas células grasas especializadas podría usarse para ayudar a la piel a combatir infecciones como el ‘Staphylococcus aureus’ (‘S. Aureus’), una bacteria patógena que es la principal causa de infecciones de la piel y el corazón y un factor importante en el empeoramiento de enfermedades, como el eccema. Cuando ‘S. Aureus’ se vuelve resistente a los antibióticos, se lo conoce como ‘Staphylococcus aureus resistente a la meticilin’a o SARM, que es una de las principales causas de muerte como resultado de una infección en Estados Unidos.Los objetivos y beneficios a largo plazo de esta investigación son comprender el sistema inmunológico infantil, adelanta Gallo. Los resultados también pueden ayudar a entender qué es lo que va mal en otras patologías como la obesidad, la diabetes y las enfermedades autoinmunes.
 
Fuente: Europa Press /COFA
Publicado en Noticias

Un estudio publicado en ‘Nature’ examinó con un detalle sin precedentes los genes que se activan en la respuesta inicial de una célula a una invasión de patógenos: la respuesta inmune innata. Midieron la actividad de miles de genes en más de 250.000 células individuales utilizando tecnología de genómica de células individuales para trazar la evolución de la inmunidad antiviral y antibacteriana.

Al secuenciar genes de más de un cuarto de millón de células en seis especies de mamíferos, investigadores del Instituto Wellcome Sanger, el Instituto Europeo de Bioinformática del Laboratorio Europeo de Biología Molecular (EMBL) y sus colaboradores, demostraron cómo los genes en la respuesta inmune tienen una actividad variada entre las células y las especies.

Trabajos anteriores han demostrado que muchos genes en la respuesta inmune innata evolucionaron rápidamente en los vertebrados. Se cree que esto es causado por la implacable presión del ataque de patógenos como bacterias y virus. Estos incluyen genes que producen moléculas de citoquinas y quimioquinas, que actúan de diversas maneras; algunas son moléculas inflamatorias que alertan al cuerpo del peligro; otras restringen la capacidad de un patógeno para multiplicarse y otras inducen la muerte celular.

Representan una estrategia de acogida exitosa para contrarrestar patógenos de rápida evolución. El equipo demostró que estos genes, que han evolucionado rápidamente a través de las especies, también tienen una actividad altamente variable en diferentes células dentro del tejido de un individuo.

En contraste, detectaron que los genes que se conservan entre las especies y regulan la respuesta inmune, se activan de manera más consistente a través de las células dentro de un tejido. Estos genes pueden estar bajo restricciones más estrictas porque están involucrados en muchas funciones diferentes dentro de las células, pero también son blanco de virus. Estos genes restringidos representan un talón de Aquiles, utilizado por los patógenos para subvertir el sistema inmunológico.

El doctor Tzachi Hagai, autor principal de la investigación en el Instituto Wellcome Sanger, subraya: “Creemos que este patrón de activación, donde algunos genes están bajo un control estricto y otros tienen una actividad más variable, ha evolucionado como una forma de afinar la respuesta inmune. Es efectiva, pero equilibrada. Los genes pueden evolucionar para ayudar a una célula a controlar a un atacante, y el uso de esos genes puede variar entre las células, por lo que los tejidos circundantes no se ven afectados por una caída masiva”.

La autora principal de la investigación, la doctora Sarah Teichmann, directora de Genética Celular del Instituto Wellcome Sanger, señala: “El poder de la secuenciación del ADN en la resolución de células individuales significa que este tipo de estudio ahora es posible. Se estima que hay 37 billones de células en el cuerpo humano, cada uno con el mismo código genético. Pero las células individuales se comportan de manera diferente, usan ese código genético de una manera distinta. Al estudiar las células individuales podemos entender estos componentes fundamentales de la vida y cómo funcionan juntos, incluso cómo resisten patógenos”.

Fuente: Europa Press / COFA

Publicado en Noticias